SYNTHESIS OF AROMATIC AND ALICYCLIC SIX-MEMBERED RINGS, LABELLED WITH 13 C IN POSITIONS 1,3,5.

Andreas Heusler and Tino Gäumann

Department of Physical Chemistry, Federal School of Technology

CH-1007 Lausanne, Switzerland

Received on March 24, 1976

SUMMARY

The synthesis of uvitic-1,3,5-13C acid, starting from Ba¹³CO₃, is described. It allows the preparation of several compounds containing the aromatic and alicyclic six-membered labelled ring on a micro scale with good yields.

INTRODUCTION

For a mass spectrometric research we needed aromatic and alicyclic compounds with the \$^{13}\text{C}\$-atoms in specified positions in the ring. We developed the synthesis of uvitic \$^{-1},3,5- 13 C acid starting from BaCO₃, enriched to 90% 13 C, on a medium scale. This acid allowed us to make three different substituted benzenes and the corresponding cyclohexanes, as well as several interesting intermediate products on a micro scale (0.5 m mol/purified product). The synthesis steps are rather classical ones, but it turned out to be necessary to change the experimental procedures in order to maximize the yield, calculated on 13 C, for small quantities of starting materials. The liquid substances were always purified by gas chromatography, the solid ones by crystallization. With the exception of the cycloalkanes the yields given correspond to the values obtained before the final purification. The analytical purity was always better than 99.5 %, checked by gas chromatography. The isotopic enrichment in 13 C corresponded to the enrichment of the BaCO₃ used (> 90% 13 C) within the limits of our mass spectrometric accuracy (\pm 0.5 %).

© 1976 by John Wiley & Sons, Ltd.

fig. 1

Synthesis

The synthetic route is shown in fig. 1. Na-acetate-1- 13 C was obtained from BaCO $_3$ (90% 13 C) and CH $_3$ MgI with a 96% yield (a) {1}. By addition to a five fold excess of Pbr $_3$ in a cooled vessel it was transformed into acetyl-1- 13 C bromide (b) {2} with 83% yield. A smaller excess of PBr $_3$ or addition of PBr $_3$ to the sodium acetate diminishes the yield because of the partial decomposition of the product by local overheating.By reaction with Cu $_2$ (CN) $_2$ the pyruvonitrile -2- 13 C is obtained with 88% yield (c) {3,4}; it is hydrolyzed to pyruvamide-2- 13 C (d) by an equivalent amount of H $_2$ 0 in ether saturated with HCl and then immediately further hydrolyzed to pyruvic-2- 13 C acid (e) with conc. hydrochloric acid {3,4}. The yield was 36%, the product containing about 40% impurities.

The cyclization was performed in conc. NaOH at 100° and gave 60% 1,2-dihydrol-methyltrimesic -1,3,5- 13 C acid (f) {4,5,6}. Na oxalate-1- 13 C was isolated as a byproduct with 90% yield. The main product which contained 40% NaCl was decarboxylated in conc. sulfuric acid under N₂ to give 80% uvitic-1,3,5- 13 C-acid (g) {4,5,6}.

Part of this acid was oxidized with alkaline $KMnO_{14}$ to 85% trimesic-1,3,5- 13 C acid (h) {4}. From this acid or from uvitic acid we obtained benzene-1,3,5- 13 C (i') and toluene-1,3,5- 13 C (i) resp. in 80% yield by decarboxylation in quino-line/CuO at 210°.

Another part of the uvitic acid was reduced by LiAlH_{$_{\rm h}$} in THF to the corresponding diol (o) {7}. Diethyl ether cannot be used because of the small solubility of uvitic acid. Without further purification the diol was brominated with PBr₃ to l-methyl-3,5-bisbromomethylbenzene-1,3,5- 13 C (p) {7} with a yield of 67%, referred to uvitic acid. The reduction of the dibromide with LiH/LiAlH_{$_{\rm h}$} in THF gave 62% of mesitylene-1,3,5- 13 C (q) {7}.

Benzene, toluene and mesitylene were hydrogenated to the corresponding cycloalkanes with Pto₂ in acetic acid at atmospheric pressure (note 1). The yields were 50% for cyclohexane-1,3,5-¹³C (n) and methylcyclohexane 1,3,5-¹³C (n') and 65% trans- and 5% cis 1,3,5-trimethylcyclohexane-1,3,5-¹³C (n'') after gas chromatographic purification. The higher total yield for the latter product is explained by its lower vapor pressure at room temperature. This can strongly affect the yields on a micro scale.

The oxidation of toluene with KMnO₄ in dilute NaOH gave 83% of benzoic-1,3, 5-¹³C acid (note 2). After catalytic hydrogenation with PtO₂ in acetic acid at normal pressure the cyclohexane-carboxylic-1,3,5-¹³C acid was isolated at its silver salt in 90% yield (1); this silver salt was decomposed to 1-bromo-cyclohexane-1,3,5-¹³C in 50% yield (m) in a Hunsdiecker-reaction with Br₂ in CCl₄ {8}. Cyclohexane-1,3,5-¹³C could also be obtained from this compound by reduction with LiH/LiAlH₄ in THF, but the yields turned out to be smaller than by the hydrogenation of benzene because of evaporation losses.

Notes:

- 1. 5 m mol benzene-1,3,5-¹³C (toluene, mesitylene) were hydrogenated in 3 ml acetic acid and 100 mg PtO₂ at atmospheric pressure. H₂- absorbtion: 320 ml in 10 h. Diluted with 20 ml pentane, filtered and washed with 30 ml NaOH(2n). The org. layer was dried with Na₂CO₃ and filtered. The pentane was distilled and the product purified by preparative gas chromatography.
- 2. 5.6 m mol toluene-1,3,5-13C, 6 m mol KMnO₁, 2 mlNaOH(2n)and 20 ml H₂O were stirred 3 h at 90°. Unreacted toluene was removed by an azcotropic distillation. 4 m mol KMnO₁ and 2 ml NaOH(2n) were added to the distillate and stirred again during 3 h at 90°. This procedure was repeated twice (with 1½ m mol KMnO₁, 2 ml NaOH(2n) and ½ m mol KMnO₁, 2 ml NaOH(2n)).

 Some NaHSO₃ was added to the joined solutions and acidified with HCl to pH 1.

 After filtration and drying we obtained 0.58 g (83%) benzoic-1,3,5-13C acid.

The financial support of the Swiss National Foundation for the Encouragement of Research is gratefully acknowledged.